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Predictions of hydrological regimes at ungauged sites are required for various purposes such as setting
environmental flows, assessing availability of water resources or predicting the probability of floods or
droughts. Four contrasting methods for estimating mean flow, proportion of flow in February, 7-day
mean annual low flow, mean annual high flow, the all-time flow duration curve and the February flow
duration curve at ungauged sites across New Zealand were compared. The four methods comprised:
(1) an uncalibrated national-coverage physically-based rainfall-runoff model (TopNet); (2) data-driven
empirical approaches informed by hydrological theory (Hydrology of Ungauged Catchments); (3) a purely
empirically-based machine learning regression model (Random Forests); and (4) correction of the TopNet
estimates using flow duration curves estimated using Random Forests. Model performance was assessed
through comparison with observed data from 485 gauging stations located across New Zealand. Three
model performance metrics were calculated: Nash–Sutcliffe Efficiency, a normalised error index statistic
(the ratio of the root mean square error to the standard deviation of observed data) and the percentage
bias. Results showed that considerable gains in TopNet model performance could be made when TopNet
time-series were corrected using flow duration curves estimated from Random Forests. This improve-
ment in TopNet performance occurred regardless of two different parameterisations of the TopNet model.
The Random Forests method provided the best estimates of the flow duration curves and all hydrological
indices except mean flow. Mean flow was best estimated using the already published Hydrology of Unga-
uged Catchments method.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

River water provides a valuable resource for out-of-stream
water use as well as for supporting in-stream environmental val-
ues. Alteration of natural river flow regimes is increasing globally
as water is taken for human, agricultural and industrial use and
power production, threatening both river biodiversity and security
of human water use (Vörösmarty et al., 2010). Globally, this has led
to a variety of legislative processes aimed at promoting prudent
and rational use of natural water resources which seek to judge
the trade-off between economic development and impact to the
natural environment (e.g. EC, 2000; New Zealand Government,
2011). For example, default limits to water resource use for all riv-
ers in New Zealand must comprise at least a minimum flow (the
flow below which no water can be abstracted) and an allocation
limit (a limit on the amount of abstraction taken from the
resource) (New Zealand Government, 2011; Snelder et al., 2013).
Information summarising natural flow regimes is therefore re-
quired to assess both the in-stream environmental and out-of-
stream economic effects of potential alterations to flow regimes.
This information may take the form of various hydrological indices
describing different aspects of the flow regime such as low flows,
high flows or flow variability (Olden and Poff, 2003; Poff et al.,
2010). Flow duration curves (FDCs) may also be utilised for various
purposes including low flow analysis (Smakhtin, 2001), quantify-
ing reliability of water supply (Snelder et al., 2011) and quantifying
alterations to hydrological regimes (Vogel et al., 2007). This type of
hydrological information is ideally derived from observed flow
time-series at the site, or sites, of interest. However, flow time-
series are only available at a small number of locations where flow
gauges have been maintained and operated. Hydrological
estimates are therefore often required at ungauged sites across a
catchment or landscape (Sivapalan et al., 2003; Blöschl et al.,
2013).

A variety of approaches can be used to provide estimates of
hydrological indices at ungauged sites. In theory, these approaches
range from purely physically-based to purely empirically-based.
Physically-based approaches have also been referred to as
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Fig. 1. Map showing the locations of the gauging stations used in this study.
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deterministic (Chow et al., 1988), distributed (Beven and Binley,
1992), physics-based (Pechlivanidis et al., 2011), process-based
or Newtonian (Yaeger et al., 2012). Empirically-based approaches
have also been referred to as stochastic (Chow et al., 1988), metric
(Pechlivanidis et al., 2011) data-based or Darwinian (Yaeger et al.,
2012). Physically-based approaches are those that aim to estimate
streamflow by utilising a conceptual understanding of the physics
describing various parts of the hydrological cycle by approximating
physical processes such as interception, evaporation, and storage
(e.g. Beven and Kirkby, 1979; Clark et al., 2008). However, assump-
tions about physical processes are necessarily required to apply
this understanding (Beven, 1997). For example, assumptions about
continuity of volumes, discretisation of governing equations and
some form of spatial averaging may be required for a physically-
based approach to be spatially-distributed (Blöschl and Sivapalan,
1995; Singh and Frevert, 2006). Similarly, time dependence must
be represented by updating state variables through a sequence of
time steps (Singh, 1995). Physically-based approaches may also re-
quire spatially distributed input data such as information on soil
characteristics such as water holding capacity, rainfall time-series
or temperature time-series (e.g. Clark et al., 2008). This has led to
much analysis and debate relating to data needs, parameter cali-
bration and uncertainty in physically-based hydrological models
(Beven, 1997; Gupta et al., 2006).

Empirically-based approaches are those that seek to estimate
hydrological indices by quantifying patterns between observed
hydrological indices and catchment characteristics. These patterns
can be quantified using a variety of techniques including linear
regression (e.g. Engeland and Hisdal, 2009), or machine learning
techniques (e.g. Booker and Snelder, 2012). One advantage of
empirically-based approaches is that their relative simplicity has
allowed them to be transferred to ungauged catchments by way
of regionalisation (e.g. Castellarin et al., 2004), generalisation or
dissimilarity modelling (e.g. Booker and Snelder, 2012). An unex-
pected result from some regionalisation studies predicting
hydrological statistics and hydrological model parameters is that
spatial proximity can be a more effective predictor than catchment
attributes (Merz and Blöschl, 2005; Parajka et al., 2005). This sug-
gests that there is still much to learn from regionalisation studies,
though it is not yet clear how to improve the performance of meth-
ods that use catchment attributes.

In practice, many physically-based models have empirical com-
ponents and many empirical models incorporate some level of
knowledge about physical processes. A balance between model
complexity and data availability must be found for both physi-
cally-based (Fenicia et al., 2008) and empirically-based (Jakeman
and Hornberger, 1993) approaches. All physically-based ap-
proaches require some parameterisation, and are known to per-
form best when calibrated against observed data (e.g. Clark et al.,
2008; McMillan et al., 2013). Similarly, the independent variables
used in empirically-based approaches are often chosen after con-
sideration of physical principles and the form of fitted empirical
relationships can also be interrogated to ensure consistency with
physical principles (e.g. Booker and Snelder, 2012). Hybrid met-
ric-conceptual models are those that seek to combine the strengths
of empirically-based and physically-based conceptual models
(Pechlivanidis et al., 2011).

Despite the variety of approaches available for estimating
hydrological conditions at ungauged sites, few studies have com-
pared estimates calculated using contrasting approaches. The aim
of this work was to compare a variety of available methods for
estimating several hydrological indices and flow duration curves
at ungauged catchments across New Zealand. These methods
employed a range of approaches from a physically-based rainfall-
runoff model to empirically-based regressions. The primary aim
was to objectively judge which method was best able to estimate
several hydrological indices across New Zealand given current cli-
matic and landcover conditions. The secondary aim was to assess
the advantages of combining two approaches by correcting
physically-based estimated time-series using empirically-based
estimated FDCs.
2. Data description

2.1. Flow time-series

A flow time-series database was collated that comprised mean
daily flows observed at 485 gauging stations with available records
of 5 full years or longer. Available mean daily flow time-series from
the National Institute of Water and Atmospheric Research’s
(NIWA) national database were collated alongside data supplied
by particular regional councils (Northland Regional Council,
Auckland Council, Waikato Regional Council, Greater Wellington
Regional Council, and Environment Canterbury). The time-series
database contained only sites that were not affected by large
engineering projects such as dams, diversions or substantial
abstractions, according to information given by each data provider.
See Snelder et al. (2005) and Booker (2013) for further details on
gauging station selection. These gauging stations were located
throughout New Zealand (Fig. 1) and represented a wide range of
hydrological conditions (Table 1). The observed time-series did
not all cover the same time periods.

It is known that hydrological regimes may not be stationary
(constant mean and constant variance through time; Hamilton,
1994) due to the presence of trends and temporal autocorrelations
(Milly et al., 2008). This is because hydrological regimes may be
influenced by a variety of factors including land cover change
(e.g. Fahey and Jackson, 1997), inter-decadal climatic patterns
(e.g. Kiem et al., 2003) and longer-term climate shifts (Parry



Table 1
Codes, descriptions and numbers of sites used in the analysis. See Snelder and Biggs
(2002) and Snelder and Hughey (2005) for full descriptions of codes.

Code Description Number of sites, total

Island
N North Island 289
S South Island 196

Climate
WD Warm-dry 18
WW Warm-wet 152
WX Warm-extremely wet 4
CD Cool-dry 75
CW Cool-wet 154
CX Cool-extremely wet 82

Topographic source of flow
GM Glacial mountain 10
H Hill 167
L Low elevation 241
Lk Lake 19
M Mountain 48

Land cover
B Bare 16
EF Exotic-Forest 22
IF Indigenous-Forest 105
P Pastoral 247
S Scrub 17
T Tussock 63
U Urban 15
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et al., 2007). However, the purpose of this study was to compare
the ability of various approaches to characterise differences in flow
regimes between sites across New Zealand given current climatic
and land cover conditions rather than to characterise differences
through time. Previous studies have found evidence for inter-dec-
adal patterns in some, but not all, indices for particular regions of
New Zealand (e.g. McKerchar and Henderson, 2003; Booker, 2013).
Despite this, for empirically-based methods it was assumed that
between-site differences in hydrological regimes far exceeded
any differences in hydrological regimes due to differences in obser-
vation periods, which were different for each observed time-series.
2.2. Observed hydrological indices

Several hydrological indices were calculated for each observed
flow time-series (Table 2). These indices were chosen because they
represent a range of hydrological conditions including floods and
droughts, can be used to estimate water resource availability,
and are used in environmental flow setting procedures. Mean flow,
Qbar, represents total potential water availability, is used for scaling
of dimensionless metrics such as standardised flow duration
Table 2
Hydrological Indices derived from observed mean daily flows.

Index Description Calculation

Qbar Mean flow over all time Mean of all daily flows

QFeb Proportion of flow in
February

Mean of all daily flows for each calendar month
divided by the overall mean flow

QMALF Mean of minimum 7-
day flow in each year

Mean of minimum flow for each water year after
running 7-day mean to the daily flows

QF Mean of maximum flow
in each year

Mean of maximum flow for each water year

FDC Probability distribution
of daily flow

Interpolation of the cumulative frequency distrib
flows onto 101 points (0–100 in steps of 1)

FDCFeb Probability distribution
of daily flow for
February

Interpolation of the cumulative frequency distrib
flows for each calendar month onto 101 points (0
1)
curves (e.g. Booker and Snelder, 2012) and may be used when com-
paring sites for ecological studies (e.g. Leathwick et al., 2005). The
proportion of flow in each month may be of interest when investi-
gating seasonality of flow. The proportion of flow in February, QFeb,
was chosen as an example because the mid-summer month of Feb-
ruary represents a generally dry month in which both irrigation
demand (the largest consumptive water use in New Zealand) and
ecological stress are likely to be high. The 7-day mean annual
low flow, QMALF, is often used as an indicator of low flow in ecolog-
ical studies (e.g. Suren and Jowett, 2006) and to represent one
component of the flow regime in environmental flow assessments
(e.g. Poff et al., 1997). Since limits to water resource use may be
expressed as proportions of QMALF, this index is of particular inter-
est in New Zealand (MFE, 2008). Mean annual flood, QF, may be
used for flood risk assessment and flood design, but may also be
used as a surrogate for physical disturbance (e.g. Poff, 1996) espe-
cially when compared to geomorphological characteristics such as
sediment grain size and channel slope (Clausen and Plew, 2004).
All four of these hydrological indices may also be used for data
driven environmental classifications (e.g. Snelder and Booker,
2012). Many further hydrological indices could have been com-
pared, but it was desirable to provide an expedient analysis and
there is known to be a high degree of covariance within sets of
these indices (Olden and Poff, 2003).

In order to minimise the likelihood of low flow periods crossing
years, each day in each observed time-series was assigned to a
water year starting on the 1st of October. Water years with more
than 30 days of missing data were excluded from the analysis. Cal-
culations of (QMALF), and mean annual flood (QF) were based on
water years. QMALF was calculated as being the mean of the 7-day
running average annual low flow in each water year.

Many hydrological indices are scale-dependent; bigger
catchments have larger values of QMALF, QF and Qbar than smaller
catchments. The values for these indices were therefore standard-
ised by dividing by catchment area. Further transformations were
then applied in order to more closely approximate normal distribu-
tions (Table 2). These transformations were applied because
normal distributions are desirable when applying regression
methods and when assessing model performance (e.g. Di Prinzio
et al., 2011).
2.3. Flow duration curves

FDCs represent the relationship between magnitude and fre-
quency of flow by defining the proportion of time for which any
discharge is equalled or exceeded (Vogel and Fennessey, 1995).
They are a useful tool for quantifying flow regimes for both
resource availability (Snelder et al., 2011) and for departure from
Standardisation Transformation

Divide by catchment area to get specific
mean flow (m3 s�1 km�2)

Log base 10

after having Divide by mean flow over entire record to
get proportion of flow in February
(unitless)

None

having applied a Divide by catchment area to get specific
QMALF (m3 s�1 km�2)

Square root

Divide by catchment area to get specific QF

(m3 s�1 km�2)
Log base 10

ution of daily Divide by catchment area to get specific
FDC (m3 s�1 km�2)

Log base 10

ution of daily
–100 in steps of

Divide by catchment area to get specific
FDC (m3 s�1 km�2)

Log base 10
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a reference state (Vogel et al., 2007). For each flow time-series two
observed FDCs were calculated from mean daily flows. FDCs were
calculated from: (a) mean daily flows in all months of the year; and
(b) mean daily flows in February. These two FDCs represent the
probability distribution of flow over all-time and the probability
distribution of flow for the month of February over all years. As
above, February was chosen to represent a dry month in which
both irrigation demand and ecological stress are likely to be high.

Each FDC was characterised using the same number of data
points (0–100 in intervals of 1), providing for a balanced study de-
sign in further statistical analysis. All daily flows were divided by
catchment area to allow modelling of differences in mean flow
whilst standardising for differences in catchment size. This was
in contrast to the method of Booker and Snelder (2012) which
investigated only the shapes of FDCs after having standardised by
Qbar.

2.4. Catchment characteristics

A GIS representation of the New Zealand river network com-
prising 550,000 segments, their unique upstream catchments and
an associated database of catchment characteristics were used to
provide information for each gauging station. The catchment char-
acteristics include a range of categorical and continuous variables
(Snelder and Biggs, 2002; Leathwick et al., 2011). The GIS river
network and associated databases have previously been used to
define a hierarchical classification of New Zealand’s rivers called
the River Environment Classification (REC; Snelder and Biggs,
2002). These databases provide inventories for river resource anal-
ysis and management purposes (e.g. Snelder and Hughey, 2005;
Clapcott et al., 2010). They have also been used to create nation-
wide models for estimating flow statistics such as flood flows
(Pearson and McKerchar, 1989), low flows (Pearson, 1995), mean
flow (Woods et al., 2006) and shapes of FDCs (Booker and Snelder,
2012) at ungauged sites using relationships between these hydro-
logical metrics and catchment characteristics. Snelder et al. (2005)
showed that grouping river segments by nested categorical subdi-
visions of climate and topography, known as the Source-of-Flow
grouping factor (Table 3), provided an a priori hydrological
regionalisation.

3. Estimation methods

For this study four methods for calculating hydrological indices
and FDCs at ungauged locations were compared (Fig. 2). Method 1
used a physically-based approach. Method 2 used a suite of data-
driven empirical approaches that were devised by expert opinion
and informed by hydrological theory to estimate each hydrological
index separately. Method 2 can be classified as being a hybrid
Table 3
Summary of the defining characteristics, categories and category membership criteria tha

Defining characteristic Categories Notation

Climate Warm-extremely-wet WX
Warm-wet WW
Warm-dry WD
Cool-extremely-wet CX
Cool-wet CW
Cool-dry CD

Topography Glacial-mountain GM
Mountain M
Hill H
Low-elevation L
Lake Lk

a Effective precipitation = annual rainfall – annual potential evapotranspiration.
b See Snelder and Biggs (2002) for a description.
metric-conceptual approach under the classification proposed by
Pechlivanidis et al. (2011). Method 2 was named after a sequence
of projects collectively known as the Hydrology of Ungauged
Catchments (HUC) projects. Method 3 used an empirically-based
regression approach. Method 4 combined a physically-based and
empirically-based approach. All methods provided estimates for
all reaches that comprise the New Zealand river network and were
therefore applicable to ungauged sites across New Zealand.
3.1. Method 1 TopNet

TopNet is a spatially distributed time-stepping hydrological
model which combines TOPMODEL concepts of sub-surface stor-
age controlling the dynamics of the saturated contributing area
and baseflow recession (Beven and Kirkby, 1979; Beven et al.,
1995) with submodels for snow and plant canopies, and a
kinematic wave channel routing algorithm (Goring, 1994). See
McMillan et al. (2013) for further detailed description and Clark
et al. (2008) for complete model equations.

For this application TopNet models used daily precipitation and
temperature data from the New Zealand Virtual Climate Station
Network (Tait et al., 2006), which was then disaggregated to hourly
resolution using stochastic disaggregation for precipitation (Rupp
et al., 2009). Additional model parameters were estimated directly
from GIS data on topography, soil and vegetation (Clark et al.,
2008; McMillan et al., 2013).

For catchment specific applications TopNet parameters can be
calibrated to optimise model performance (e.g. Bandaragoda
et al., 2004; McMillan et al., 2013). However, in this case uncali-
brated national TopNet models of New Zealand (Henderson et al.,
2011) were run using an hourly timestep over the period 1973–
2010. Two different versions of TopNet were available. National
TopNet Version 0 was discretised using Strahler-1 sub-catchments
from the REC. The typical catchment area of a Strahler-1 catchment
is 0.7 km2. This version had a spatially uniform value for the
parameter, f, which represents the decline in saturated hydraulic
conductivity of the soil with depth (Clark et al., 2008). This param-
eter effectively controls responsiveness of river flow to rainfall.
National TopNet Version 1 was discretised using Strahler-3
sub-catchments from the REC. This version had a spatially distrib-
uted set of values for f. The f parameter took different values
according to the hydrological regionalisation described by Toebes
and Palmer (1969), ranging from values more than 8 m�1 for steep
catchments in the Southern Alps to less than 1 m�1 in flat catch-
ments on the volcanic plateau in the central North Island (see
Fig. 1 for place names). Where flow time-series were required for
Strahler-1 and Strahler-2 catchments flow data were downscaled
by multiplying flows from the nearest available Strahler-3 node
in the REC network by the ratio of the catchment area of the
t combine to define Source-of-Flow groupings within the REC.

Category membership criteria

Warm: mean annual temperature P 12 �C
Cool: mean annual temperature < 12 �C
Extremely Wet: mean annual effective precipitationa P 1500 mm
Wet: mean annual effective precipitation >500 and <1500 mm
Dry: mean annual effective precipitation 6500 mm

GM: M and % permanent ice >1.5%
M: >50% annual rainfall volume above 1000 m ASL
H: 50% rainfall volume between 400 and 1000 m ASL
L: 50% rainfall below 400 m ASL
Lk: Lake influence indexb >0.033



Fig. 2. Schematic showing different methods used to estimate hydrological indices and flow duration curves (FDCs).

Fig. 3. Hydrology of Ungauged Catchments (HUC) low flow model and parameters.
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required location with that of the substitute location. For both Ver-
sion 0 and Version 1 hourly data for the river reach in which each
gauging station was located were averaged over each calendar day
to obtained mean daily flow time-series. Hydrological indices were
then calculated using the same algorithms as were applied to the
observed flow time-series.

Ideally both observed and estimated time-series would be
available for a very long period (e.g. 100 years). However, the avail-
able observed flow time-series did not all cover the same period,
and TopNet data were available for a uniform time period (1973–
2010). This provided the opportunity to test the sensitivity of cor-
respondence between observed and estimated hydrological indices
to synchronisation of the observed and TopNet estimated time-
series. Observed and TopNet Version 1 estimated indices were
compared using two different procedures. For the first procedure,
indices calculated from all available observed flows (5 years or
more) were compared with those calculated from all available Top-
Net Version 1 estimated flows (1973–2010). Essentially this proce-
dure assumed that, when averaged over time, both the observed
and TopNet estimated time-series represented the long term
hydrological conditions (i.e. that both observed and TopNet esti-
mated time-series were stationary and that records were suffi-
ciently long to characterise long term conditions). For the second
procedure indices calculated from only the time period for which
both observed flows and TopNet estimated flows were available
were compared. Better fit between synchronised observed and
estimated values (the second procedure) in comparison to
non-synchronised (the first procedure) would indicate non-
stationarities or long-term climatic cycles in the observed hydro-
logical regimes that were detectable in the TopNet time-series.
Some observed time-series fell completely outside of the TopNet
time-series. This reduced the number of time-series available for
the second procedure compared to the first.

3.2. Method 2 HUC

The approach used to estimate Qbar for Method 2 (HUC) is
described in Woods et al. (2006). Woods et al. (2006) evaluated
four simple models of mean annual runoff throughout New
Zealand, predominantly based on precipitation information and
estimated evapotranspiration. The preferred model of Woods
et al. (2006) subtracts an estimate of annual actual evapotranspira-
tion from a precipitation surface. Annual actual evapotranspiration
is estimated according to the ratios of potential evapotranspiration
with annual precipitation following Zhang et al. (2004), and a sin-
gle water balance parameter which is estimated by calibration
using data that were independent of those used to calculate mean
annual runoff. This method applies a regional empirical bias cor-
rection to the results of a previously uncorrected model.

The approach used to estimate QFeb for Method 2 was to employ
a regionalisation of QFeb based on Source-of-Flow groupings in the
REC and New Zealand island (i.e. North Island or South Island,
Fig. 1), where Source-of-Flow is a combination of the climate and
topography classes of a catchment (Table 3). For each region QFeb

was the mean of the QFeb for all observed flow records that belong
to that class in that island. Six sets of classes were amalgamated
where values were required but no observed flow records were
available. In these cases expert judgement was applied to deter-
mine the nearest class in environmental space. For example, in
the North Island, Cool-Dry Hills were joined with Warm-Dry Hills,
and Cool-Dry Mountains were joined with Cool-Wet Mountains.

The approach used to estimate QMALF for Method 2 is described
in Henderson et al. (2004). Fig. 3 shows a schematic description of
the model and its parameters. There were three types of parame-
ters: (a) climate parameters (T the average length of a dry season,
N the number of rain events in that season, P the amount of rain in
the dry season); (b) flow parameters (Qbar the mean flow, Q0 the
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average flow at the start of the dry season, a the fraction of
dry-season rain that becomes streamflow); and (c) catchment
parameters that describe the way in which water is released from
catchments during the dry season (b and T⁄). Estimates of all these
input parameters have previously been developed for all of New
Zealand (Henderson et al., 2004).

The approach used to estimate QF for Method 2 is described in
Pearson and McKerchar (1989) and McKerchar and Pearson
(1989). Essentially, these estimates are gained from interpolation
onto ungauged sites from a contour map of QF in geographical
coordinates which was itself derived from a spatial interpolation
of observed data. Since this approach used instantaneous flow data
to calculate QF, rather than mean daily values, it was anticipated
that the approach would overestimate QF in comparison to ob-
served values derived from mean daily values. However, the esti-
mates were still included in the analysis.

The approach used to estimate FDCs for Method 2 was to as-
sume a log-normal probability distribution as a model of the flow
duration curves. This is a log transformation of:

gðx; #Þ ¼ ð1=
ffiffiffiffiffiffiffi

2p
p

#2Þ exp½�1=2ððx� #1Þ=#2Þ2�; ð1Þ

which has two parameters, h1 and h2. It was further assumed that h1

could be estimated as the mean flow (Qbar from Method 2) and that
h2 would be estimated as a linear function of the b parameter,
which was also used to calculate QMALF for Method 2. The approach
used to estimate FDCFeb was to scale the estimated FDC for Method
2 by the estimated QFeb for Method 2.

3.3. Method 3 Random Forests

A regression technique called Random Forests was used to ap-
ply a regression of each observed hydrological index (Table 2)
and each of the three parameters describing a GEV distribution
of the all-time FDC and the FDC for February as a function of avail-
able catchment characteristics (Table 4). This method uses ma-
chine-learning by combining many regression trees into an
ensemble to produce more accurate regressions by drawing several
bootstrap samples from the original training data and fitting a tree
to each sample (Breiman, 2001; Cutler et al., 2007; Hastie et al.,
2009). Random forest models fitted using catchment characteris-
tics have previously been shown to be able to explain variation
in hydrological patterns such as parameters describing FDCs
(Booker and Snelder, 2012), the number of events per year that ex-
ceed three times the median flow (Booker, 2013) and various other
hydrological indices (Snelder and Booker, 2012). As the number of
trees increases the generalisation error always converges and it
was assumed that use of 500 trees was sufficiently high to ensure
convergence.

The predictions from random forest models were tested using a
leave-one-out cross validation procedure referred to here as
jack-knifing (Efron, 1982; Booker and Snelder, 2012). This cross-
validation procedure was applied by leaving out all data associated
Table 4
Codes and descriptions of independent variables used to fit regression models. See
Leathwick et al. (2011) for full descriptions.

Variable name Description

usPET_Q Annual potential evapotranspiration of catchment (mm)
usRainDays10_Q Catchment rain days, greater than 10 mm/month (days/

year)
usAnRainVar_Q Coefficient of variation of annual catchment rainfall (m)
usSteep_Q % annual runoff volume from area of catchment with

slope > 30� (%)
usCatElev Average elevation in the catchment (m)
usParticleSize_Q Catchment average of particle size (ordinal scale)
with each of the 485 sites and then estimating each hydrological
index for the left-out site from all remaining sites. The results from
this procedure produced estimates as if each site were ungauged
(Ganora et al., 2009). Comparison between observed and jack-
knifed values allowed an assessment of both the robustness and
reliability for estimation at ungauged sites (Castellarin et al., 2004).

For each time-series, the parameters describing a GEV distribu-
tion (Eq. (2)) were fitted to all observed mean daily flows and then
all observed mean daily flows in February. The observed mean dai-
ly flows were divided by catchment area for each gauging station
prior to fitting the GEV parameters. The GEV distribution is de-
scribed by three parameters and has shown to represent the range
of shapes of standardised FDCs found across New Zealand. See
Booker and Snelder (2012) for further discussion of estimating
standardised FDCs at ungauged sites across New Zealand using
various statistical techniques to generalise parameters describing
various probability distributions.

Gðx; #Þ ¼ exp½�ð1� ð#3ðx� #1ÞÞ=#2Þ1=#3 �; ð2Þ
3.4. Method 4 TopNet corrected

FDCs calculated using the jack-knifed Random Forests method
represent a unique FDC at any location in the New Zealand river
network as if each location were ungauged. This provided the
opportunity to correct for bias in the TopNet estimated FDCs using
the Random Forests estimated FDC at each site as if it were an ob-
served FDC. Therefore the jack-knifed Random Forests FDCs were
used to calculate a correction factor for each percentile, i, of the
TopNet FDC for each site, j.

TopNet correctedij ¼ TopNetij � ðRandom Forestij=TopNetijÞ: ð3Þ

Since the exceedance percentile of each datum in each TopNet
time-series was known, these corrections could also be applied
to each TopNet time-series. This allowed re-calculation of each
hydrological index from each corrected time-series. This procedure
was repeated separately for TopNet Version 0 FDCs and TopNet
Version 1 FDCs.
3.5. Observed versus predicted values

Scatterplots of observed values on the y-axis versus predicted
values after having standardised and transformed each index
(Table 2) were plotted for each index for each method (Piñeiro
et al., 2008). Following the suggestion of Moriasi et al. (2007), three
model performance metrics were calculated for each set of ob-
served versus predicted values: Nash–Sutcliffe efficiency (NSE);
percent bias (pbias); and ratio of the root mean square error to
the standard deviation of observed data (RSR). NSE is a dimension-
less metric that determines the relative magnitude of the residual
variance (‘‘noise’’) compared to the observed data variance (‘‘infor-
mation’’) (Nash and Sutcliffe, 1970). pbias measures the average
tendency of the simulated data to be larger (negative pbias) or
smaller (positive pbias) than their observed counterparts (Gupta
et al., 1999). RSR standardises RMSE using the observations
standard deviation, and it combines both an error index and the
additional information recommended by Legates and McCabe
(1999). See Moriasi et al. (2007) and references therein for full de-
tails of these performance evaluation metrics. The same metrics
were applied to 101 points representing log specific (flow per unit
catchment area) FDCs for each site for each method for the Febru-
ary and all-time FDCs separately. Percentiles of error in log space
for both the February and all-time FDCs were calculated after
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having grouped catchments by topographic source of flow (Table 1;
Snelder and Hughey, 2005).

Spatial patterns were assessed using observed values in
comparison with those calculated using each method across the
New Zealand river network. QMALF was shown as an example index
due to its strong regional pattern and importance for water
resources planning (New Zealand Government, 2011).
4. Results

4.1. Hydrological indices

Synchronisation of TopNet Version 1 with the observed time-
series made little impact on the performance metrics (NSE, RSR
and pbias) when compared to using the full TopNet time-series
(Table 5). This was especially the case for Qbar, QMALF and QF. For
Qbar, synchronisation marginally reduced an overestimation bias,
but also resulted in a small reduction in performance in terms of
NSE and RSR (reduced NSE, increased RSR). For QMALF, synchronisa-
tion resulted in increased overprediction bias, but marginally
improved performance in terms of NSE and RSR. The process of
synchronisation did alter performance for QF as synchronisation
improved performance in terms of NSE and RSR, but substituted
an overprediction bias with an underprediction bias of the same
magnitude. These results indicate that it was not the case that
there were non-stationarities in observed hydrological regimes
that were generally detectable in the TopNet time-series for Qbar,
Table 5
Various metrics quantifying correspondence between observed and predicted values
for four hydrological indices (Table 2) using various estimation methods. NSE is
Nash–Sutcliffe efficiency. RSR is the ratio of the root mean square error to the
standard deviation of observed data. pbias is the average tendency of the calculated
data to be larger or smaller than their observed counterparts.

Index Method n NSE pbias RSR

log(Qbar/area)
TopNet_0 485 0.73 4.050 0.523
TopNet_1 Sync 456 0.70 3.138 0.552
TopNet_1 485 0.71 3.469 0.537
HUC 485 0.87 0.298 0.363
RFjacked 485 0.80 �0.241 0.446
TopNet_0 Corrected 485 0.80 �0.410 0.447
TopNet_1 Corrected 485 0.80 �0.433 0.447

QFeb

TopNet_0 485 0.09 11.733 0.955
TopNet_1 Sync 456 0.29 �2.420 0.843
TopNet_1 485 0.08 2.499 0.960
HUC 485 0.22 5.354 0.884
RFjacked 485 0.44 0.216 0.748
TopNet_0 Corrected 485 0.31 2.872 0.828
TopNet_1 Corrected 485 0.27 3.020 0.853

root(QMALF/area)
TopNet_0 485 0.36 17.496 0.797
TopNet_1 Sync 454 0.59 �11.031 0.643
TopNet_1 485 0.58 �10.739 0.646
HUC 485 0.71 �0.506 0.540
RFjacked 485 0.75 0.157 0.499
TopNet_0 Corrected 485 0.66 9.132 0.587
TopNet_1 Corrected 485 0.67 5.923 0.571

log(QF/area)
TopNet_0 485 0.50 7.523 0.704
TopNet_1 Sync 456 0.30 �36.797 0.837
TopNet_1 485 0.31 �34.958 0.832
HUCa 485 �0.45 73.012 1.206
RFjacked 485 0.63 �0.674 0.609
TopNet_0 Corrected 485 0.55 �16.521 0.668
TopNet_1 Corrected 485 0.46 �31.733 0.734

a In this comparison HUC estimates of instantaneous QF were compared with
observed QF calculated from mean daily flow data.
QMALF or QF. This may not have been the case for QFeb. This is an
understandable result as Qbar, QMALF and QF will be less sensitive
to inter-annual variability than QFeb. This is because Qbar is an aver-
age calculated over all the record, and both QMALF and QF are both
averages of indices calculated for each year of record, whereas QFeb

is calculated over a smaller time-window in each year of record.
Overall there was more difference in performance between Top-

Net Version 0 and TopNet Version 1 than there were differences
between synchronisation and non-synchronisation of TopNet Ver-
sion 1. This indicates that TopNet results are more sensitive to
changes to the TopNet f parameter than to either the assumption
that the 1973–2010 time-series represent the long-term flow
regime, or any non-stationarities combined with relatively short
records in the observed time-series.

When compared to TopNet Version 0, TopNet Version 1 reduced
an overestimation of Qbar, but reduced performance in terms of NSE
and RSR. For QFeb, TopNet Version 1 marginally improved NSE, re-
duced an overestimation pbias, but increased RSR. For QMALF, Top-
Net Version 1 dramatically improved NSE, improved RSR and
replaced a large overestimation with an underestimation of lesser
magnitude. For QF, TopNet Version 1 reduced performance of all
metrics when compared to TopNet Version 0. This indicates that
high flows were not better predicted following the regionalisation
of the TopNet f parameter. However, over all four indices there
were greater differences between methods (TopNet, HUC and
Random Forests) than there was between the two TopNet versions
(Table 5 and Fig. 4).

The TopNet time-series was corrected using the jack-knifed
Random Forests FDC estimates and then used to estimate the
hydrological indices. For all indices and both TopNet versions, cor-
rected estimates improved performance in terms of NSE and RSR
when compared to the uncorrected TopNet estimates. Corrected
estimates produced less bias as indicated by smaller magnitude
pbias when compared to uncorrected estimates from both TopNet
versions for all indices except QFeb for Version 1 and QF for version
0. Correction of TopNet Version 1 caused an increase in overpredic-
tion of QFeb. Correction of TopNet Version 0 caused an overpredic-
tion to change to an underprediction of greater magnitude. Overall,
correction greatly reduced differences in performance between the
two TopNet versions (Table 5 and Fig. 4).

For Qbar and QFeb there was more difference between TopNet
Version 0 and TopNet Version 1 than there was between TopNet
Version 1 and TopNet 1 Corrected. After correction, the perfor-
mance of Qbar estimated from both TopNet versions matched the
performance of those estimated using Random Forests. This was
because the correction procedure forced the TopNet corrected esti-
mated FDCs to match jack-knifed Random Forests estimated FDCs
and therefore TopNet corrected Qbar matched jack-knifed Random
Forests estimated Qbar.

NSE was positive (negative values indicate that the mean ob-
served value is a better predictor than the simulated value) for
all indices for all methods except QF for Method 2 HUC (Table 5).
This indicates that, except for QF from the HUC method, all meth-
ods provided some degree of useful information about patterns
in the estimated values. In this comparison HUC estimates of
instantaneous QF were compared with observed QF calculated from
mean daily flow data. Poor performance and, in particular, overes-
timation of QF for Method 2 HUC was therefore not surprising. In
fact, McKerchar and Pearson (1989) previously showed that the
method was able to explain a substantial fraction of the observed
variation in QF when compared to observed values calculated from
instantaneous flow data.

For Qbar the HUC method performed best in terms of both NSE
and RSR. This is the method already recommended by Woods
et al. (2006). For QMALF, QF and QFeb the Random Forests method
performed best in terms of both NSE and RSR. The Random Forests
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method also gave the lowest magnitude pbias for QF and QFeb but
not for QMALF (Table 5). These findings correspond well with visual
inspection of observed against predicted values, which indicated
that the Random Forests method reduced scatter and produced
unbaised estimates for all four indices but was out-performed by
Method 2 HUC for Qbar (Fig. 4).

4.2. Flow duration curves

More sites had better performance as indicated by higher NSE
values, lower RSR values and lower magnitude pbias for all-time
FDCs compared to February FDCs regardless of estimation method
(Fig. 5). This indicates greater uncertainties associated with esti-
mation of February FDCs compared to all-time FDCs. More sites
had better performance in terms of NSE, RSR and pbias for TopNet
Version 1 in comparison to TopNet Version 0 for the all-time FDC
and the February FDC in particular. Negative pbias values for many
TopNet Version 0 estimated February FDCs indicated consistent
underestimation. This consistent underestimation was not present
for TopNet Version 1, which showed an equal likelihood for either
underestimation or overestimation of the February FDC. This indi-
cated that regionalisation of the TopNet f parameter improved flow
estimation, particularly in February.

Both the HUC and the Random Forests methods performed bet-
ter than either of the uncorrected TopNet methods for both the all-
time and February FDCs. Both all-time and February FDCs had
more sites with higher NSE, lower RSR and lower magnitude pbias
when estimated using the Random Forests method compared to



values

Random Forests

HUC

TopNet Version 1

TopNet Version 0

NSE

Al
l t

im
e

RSR pbias

Random Forests

HUC

TopNet Version 1

TopNet Version 0

-10 -5 0
Fe

br
ua

ry
0 2 4 6 -100 -50 0 50 100

Fig. 5. Box and whisker plots of Nash–Sutcliffe efficiency, RSR (ratio of the root mean square error to the standard deviation of observed data) and pbias (average tendency of
the calculated data to be larger or smaller than their observed counterparts) at each site for all-time and February flow duration curves for each method (n = 101 points at
each of 485 sites). Solid dot indicates median. Box indicates quantiles. Whiskers indicates 95th percentile. Open dots indicate outliers.

D.J. Booker, R.A. Woods / Journal of Hydrology 508 (2014) 227–239 235
the other methods. Since the TopNet 1 Corrected estimated
all-time FDC was corrected using the jack-knifed Random Forests
estimated FDC, performance of the TopNet 1 Corrected estimated
all-time FDC was the same as the jack-knifed Random Forests esti-
mated FDC.

Percentiles of error in log space for February and all-time FDCs
indicated some variations in the performance of the various
methods across different landscape settings (Fig. 6). FDCs from
Mountain and Glacial Mountain catchments (see Table 1) were
generally estimated best, regardless of method. Lowland catch-
ments, particular for the February FDC, were least well estimated.
TopNet version 1 showed systematic improvements over TopNet
version 0 for Mountain and Lake catchments, but not Hill or
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4.3. National estimates for New Zealand

All methods were able to provide predictions for ungauged sites
across New Zealand which reproduced the major regional varia-
tions in observed QMALF (Fig. 7). These geographical patterns in-
cluded a strong east–west gradient in the South Island as well as
the influence of the Southern Alps (see Fig. 1 for place names). As
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they cross the eastern plains of the South Island, large mountain-
fed rivers with markedly higher QMALF stand out against a back-
ground of comparatively lower-yielding lowland streams. To the
northeast of the central North Island, the rivers draining a volcanic
plateau have relatively high QMALF, with large storage capacity in
the thick pumice and ash layers sustaining low flows (Mosley
and Pearson, 1997). Both Random Forests (Fig. 7c) and TopNet
(Fig. 7d) predicted lower values of QMALF than HUC (Fig. 7b) for
the south west coast of the South Island, but predicted slightly
higher QMALF for most other locations in comparison with HUC. It
should be noted that none of the methods were designed to take
account of large engineering schemes such as those currently in
place on several of New Zealand’s large rivers (e.g. the Waikato,
Rangitata, Waitaki, Clutha and Waiau rivers).

5. Discussion

A limited set of hydrological indices along with both the all-
time and February FDCs were investigated (Table 2). This set of
hydrological indices included those representing both high and
low flow extremes as well as an aspect of seasonality. These indices
are commonly used for water resource planning in New Zealand,
Fig. 7. All observations and for each method predictions of 7-day mean annual low
flow (MALF) for all rivers of Strahler order greater than three. TopNet results are for
uncorrected TopNet Version 1.
however not all aspects of the flow regime, such as the frequency
of mid-range flows, were represented. This aspect of the flow re-
gime could have been included by calculating various additional
indices such as the number of events per year exceeding three
times the long-term median flow (FRE3; Biggs, 2000), but no
HUC method was available for estimating this index. National esti-
mates of FRE3 using Random Forests, including comparison with
observed values, were calculated and compared with observations
by Booker (2013).

For the Random Forests method FDCs were described using the
three parameter GEV distribution. Other distributions could have
been used including log Pearson Type III (LP3; Ganora et al.,
2009) or a mixed gamma distribution (Cheng et al., 2012). Booker
and Snelder (2012) showed that, although the LP3 distribution may
provide better fits to observed FDCs when standardised by mean
flow, uncertainties in generalising the LP3 parameters from catch-
ment characteristics meant that a method using the GEV distribu-
tion to parameterise the shape of the FDC gave better performance
for prediction at ungauged locations.

The same set of independent variables was used to model all
four hydrological indices. Procedures designed to optimise the
set of independent variables such as the Model Improvement Ratio
(Murphy et al., 2010) were not employed to optimise the predictor
data set. Although Random Forests models automatically down-
weight independent variables that are less importance, this ap-
proach may not have provided optimal Random Forest models in
all cases as one would expect different sets and different numbers
of independent variables to best predict each dependent variable.
For example, summer temperature might be expected to be related
to low flows, but not flood flows. Despite this the Random Forests
method still outperformed the other methods even when a leave-
one-out cross validation procedure was applied to allow for inde-
pendent assessment of estimation performance against observed
data.

Although many performance metrics are available to assess
model performance, NSE, RSR and pbias were used as recom-
mended by Moriasi et al. (2007). Although these three metrics
are designed to quantify different aspects of model performance,
they often gave consistent information regarding model
performance.

The aim of this work was to assess the ability of various meth-
ods to estimate hydrological conditions for ungauged catchments
in the absence of major hydrological alterations such as that
caused by abstraction, storage or diversion. The ability to estimate
the effects of either climate change or land cover change were not
assessed. It may be necessary to assess the potential effects of cli-
mate change (Zemansky et al., 2012), land use change (Scanlon
et al., 2007) or their combined effects (Brekke et al., 2004) on flow
regimes to develop rational management strategies. Both TopNet
and the Random Forests models described above have inputs that
could be changed to assess the impacts of climate change. How-
ever, the validity of this approach was not tested here. It should
be noted that there are several issues relating to model structure
and parameterisation that would need to be resolved when using
physically-based models to predict the hydrological impacts of
environmental change (Wagener, 2007). Similarly, when using
flexible empirically-based models such as Random Forests to pre-
dict outside of the fitted model domain it is important to under-
stand how the algorithms perform when projected into the new
environmental conditions (Elith and Graham, 2009).

These results indicate that Random Forests outperformed both
TopNet versions for all four hydrological indices as well as for
FDCs. This finding corresponds well with the findings of others.
For example, Parkin et al. (1996) found that streamflow predictions
from an a priori parameterised physically-based model contained
considerable uncertainty. Viglione et al. (2013) also found that a
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statistical model outperformed a rainfall-runoff model (with
regionalised, rather than a priori parameters), for prediction of run-
off statistics in Austria. It should be noted that, although TopNet
Version 1 arguably represents the best currently available physi-
cally-based approach for application to ungauged sites across
New Zealand, this method was uncalibrated. It is known that cali-
bration of TopNet parameters can significantly improve estimation
performance by optimising model performance against observed
flows (e.g. Bandaragoda et al., 2004; McMillan et al., 2013).
Calibration procedures are only possible for catchment specific
applications with available flow data. It is possible to transfer
calibrated parameter sets to ungauged sites (e.g. Yu and Yang,
2000) given a suitable regionalisation procedure (e.g. Li et al.,
2010; Coopersmith et al., 2012). Although calibration procedures
have been applied to TopNet for several catchments (Bandaragoda
et al., 2004; Clark et al., 2008; McMillan et al., 2013), a procedure to
regionalise the calibrated parameter values is not currently avail-
able. Such procedures can be hampered by issues such as equifinal-
ity within the calibration parameter sets (Beven, 2006; Bárdossy,
2007).

The parameter estimation technique applied for TopNet may be
considered as the main cause of the poorer performance of the
TopNet models. Both Random Forest and HUC use a statistical
regionalisation approach which allows calibration against flow
measurements, whereas all TopNet parameters used in this paper
were estimated a priori. This parameter estimation approach is less
accurate than most regionalisation techniques for parameter esti-
mation, but it is relevant for developing a scientific understanding
of catchment function. It would almost certainly be possible to ob-
tain improved TopNet flow simulations in ungauged catchments
by estimating TopNet parameters using statistical regionalisation
techniques, but this approach was not taken in this paper. When
the TopNet model parameters are calibrated to measured flow,
the model performance in gauged basins is considerably better
than shown here (e.g. McMillan et al., 2013). Other work suggests
that TopNet has an adequate representation of hydrological
processes. For example, Poyck et al. (2011) showed that a TopNet
model calibrated only at the outlet of a 20,000 km2 catchment pro-
duced good results for strongly contrasting sub-catchments within
the basin. However, TopNet still has limitations, especially in the
way that soil moisture processes and groundwater flow are repre-
sented (McMillan et al., 2011).

Results showed that models performed best in Mountain catch-
ments (Fig. 6), which typically have very high rainfall in New Zea-
land, and worst in lowland catchments, which typically have an
aridity index greater than unity (i.e., potential evaporation exceeds
rainfall). This is consistent with the comprehensive global review
of Parajka et al. (2013), who found poorer model performance in
more arid catchments. The reasons for poorer performance in arid
New Zealand catchments are likely to be the same as those found
elsewhere, that is, the increased complexity and non-linearity of
hydrological processes in arid regions.

The Random Forests method can be used to estimate a unique
FDC at any location in the New Zealand river network. These esti-
mated FDCs could be used to provide a more reliable regionalisation
than would be the case using data from observed locations alone be-
cause they represent variability across all of New Zealand rather
than a sample of observed FDCs (Snelder and Booker, 2012).
Furthermore, the Random Forests estimated FDC’s at ungauged
locations could provide the opportunity to calibrate TopNet param-
eters against an estimated FDC for ungauged locations in the New
Zealand river network. This would require a method that allowed
calibration against an observed (or estimated) FDC (e.g. Yu and
Yang, 2000; Yadav et al., 2007; Westerberg et al., 2011). Such a
method may be developed as part of future work. However,
considerable improvements in performance were gained when both
TopNet versions were corrected using the jack-knifed estimated
FDCs from Random Forests. This indicates that the performance of
TopNet flow estimates can be increased considerably without auto-
mated parameter set calibration procedures (Yu and Yang, 2000) or
increased understanding of hydrological processes controlling
variability of FDCs across catchments (Yaeger et al., 2012). Further-
more, the correction procedure reduced differences in performance
between TopNet Version 0 and TopNet Version 1.

The correction procedure tested here fulfilled the secondary aim
of the study by correcting physically-based estimated time-series
using empirically-based estimated FDCs, and therefore combined
the more accurate Random Forest estimates with the utility of
the continuous time-series provided by TopNet. It should be noted
that it was not necessarily an objective of this study to combine the
complementary natures of process-based and empirically-based
models as suggested in Di Prinzio et al. (2011) and elsewhere,
although this may be the next step for this research. The procedure
represents one relatively crude method of combining a process-
based approach with a data-based approach. The procedure pro-
vides estimates calculated using a data-based approach to correct
for bias within FDCs calculated using a process-based approach.
This contrasts with alternative approaches which have augmented
stochastic approaches with more process-based approaches by
incorporating different components of catchment dynamic re-
sponses into stochastic models (e.g. Botter et al., 2009;
Muneepeerakul et al., 2010; Cheng et al., 2012) or by applying a
water balance modelling framework to divide the FDC into three
parts (Yokoo and Sivapalan, 2011).

The TopNet correction procedure provided results that matched
the performance of Random Forests for Qbar and the all-time FDC,
but not for QFeb, QMALF or QF. This was an expected result since QMALF

and QF represent flow extremes which are most sensitive to the pre-
diction and cross-validation of GEV parameters, and QFeb, represents
seasonality which was not considered in the correction procedure.

The correction procedure has a major advantage over the Ran-
dom Forest method because any required hydrological indices
can be calculated from the corrected time-series. In contrast, the
Random Forests method requires fitting of new models to any
newly calculated indices prior to estimation at ungauged sites.
The correction procedure was designed to ensure that FDCs ob-
tained from the corrected time-series matched those estimated
by the Random Forest method, whatever the form of the estimated
time-series being corrected. It should be noted that the procedure
could be applied to non-behavioural (sensu Beven, 2006) model
estimates and still result in the same FDC. In this respect applica-
tion of the correction procedure is susceptible to equifinality (Bev-
en, 2006). In theory, a time-series of random numbers could be
corrected to match the FDC estimated by the Random Forest meth-
od, but this does not mean that the corrected time-series would
match the observed time-series.
6. Conclusion

Results showed the Random Forests method provided the best
estimates of both FDCs and all four hydrological indices except
mean flow. Mean flow was best estimated using the already
published HUC method (Woods et al., 2006). Results also showed
that considerable gains in estimation performance can be made
by correcting estimates calculated using physically-based models
with estimated values calculated using empirically-based models.
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